Chapter 2 AIA Edge AI 技術班 專案

2.1 專案準備資料

2.2 Jetbot 開機設定

參考此篇文章 https://jetbot.org/master/index.html 執行以下指令 > 1. 下載及燒錄 image > - 我用的是 4GB 的版本 > - 簡單判斷 2GB 或 4GB 的方式:看充電的接頭是 micro USB 的是 for Jetson Nano (4GB), 或是 USB-C (for Jetson Nano 2GB)

Platform JetPack Version JetBot Version Download
Jetson Nano (4GB) 4.4.1 0.4.2 jetbot-042_nano-4gb-jp441.zip

2. login 的 id 跟 password 都是 jetbot

3. 如果開機時進入的是 command line 模式, 可以參考以下指令, 進入 GUI 模式 https://imadelhanafi.com/posts/jetson_nano_setup/ 因為, 待會兒的 examples 程式之一 teleoperation 需要用到遊戲手把 🎮 控制器, 我在 Mac 上操作 notebook 時有問題, 只有在 Jetbot 上直接執行時才 okay.

# disable GUI on boot
# After applying this command, the next time you reboot it will be on terminal mode
$ sudo systemctl set-default multi-user.target

# To enable GUI again
$ sudo systemctl set-default graphical.target

4. 設定 wifi 的 command line 指令, 要記得 reboot 才能生效

$ sudo nmcli device wifi connect <SSID> password <PASSWORD>
Device 'wlan0' successfully activate with '27xxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'.
$

5. 安裝 VNC - 參考 Jetson Nano 開機畫面上的 L4T-README 目錄下的 README-vnc.txt - 要注意的是, vnc 需要 log in 後才能執行, 需要到系統設定內去設定 automatic log in. - 執行下列 script 來安裝 vino (vnc 程式)及相關設定 - 將 ‘thepassword’ 改成你設定的密碼, 如 ‘jetbot’

$ sudo apt update
$ sudo apt install vino

# Enable the VNC server to start each time you log in
$ mkdir -p ~/.config/autostart
$ cp /usr/share/applications/vino-server.desktop ~/.config/autostart

# Configure the VNC server
$ gsettings set org.gnome.Vino prompt-enabled false
$ gsettings set org.gnome.Vino require-encryption false

# Set a password to access the VNC server
# Replace thepassword with your desired password
$ gsettings set org.gnome.Vino authentication-methods "['vnc']"
$ gsettings set org.gnome.Vino vnc-password $(echo -n 'thepassword'|base64)
$

6. 修改 /etc/X11/xorg.conf, 將下列設定加於檔案最後 - 解析度的 1280 800 是最佳設定, 調整成其它解析度後, 無法在 Mac 上看到完整螢幕, 需要上下調整, 反而不方便

Section "Screen"
   Identifier   "Default Screen"
   Monitor      "Configured Monitor"
   Device       "Tegra0"
   SubSection "Display"
       depth    24
       virtual 1280 800
   EndSubSection
EndSection

7. GPIO (40 PIN expansion header) 設定 - 根據官網 Configuring the 40-pin Expansion Header, 執行以下指令來設定硬體 - 參考中文說明 第一次用Jetson nano 就上手 - 使用40 pin GPIO - 選擇 Configure 40-pin Expansion Header, 設定相關的腳位(若沒把握, 就全選), 再選擇 Save and reboot to reconfigure pins. 重新開機後.

$ sudo /opt/nvidia/jetson-io/jetson-io.py
$

8. 安裝 jtop 在 Jetson 中有一個非常好用的工具就是 jtop,可以同時查看 CPU 資源與 GPU 資源,另外也可以看目前 CPU 與 GPU 的溫度與功耗,另外他還有貼心的服務,就是將你目前的 library show 出來。

$ sudo apt-get install python-pip python-dev build-essential 
$ sudo -H pip install jetson-stats
$ sudo jtop
$

9. 重新開機後, 先到 Jetbot 的 LED 上查看 wlan 的 IP 位址, 我查到的是 192.168.1.16

10. 到 PC 或 Mac 的 browers, 打開 http://jetbot_ip_address:8888 (我的例子就是 http://192.169.1.16:8888). 或者是直接在 Jetbot 上執行, 需要進入 jetbot 的 GUI 模式, 打開 browser, 輸入 http://localhost:8888

11. Create Linux OS disk SWAP, refer to the link 執行以下指令

# 理想的SWAP size應是RAM的二倍,但由於SD空間不是很充裕,先設定 4G 或 8G SWAP。
$ sudo fallocate -l 8G /swapfile
$ sudo chmod 600 /swapfile
$ ls -lh /swapfile

# 建立並啟用SWAP
$ sudo mkswap /swapfile
$ sudo swapon /swapfile
$ sudo swapon –show

# 輸入free -h確認已經有 4G 或 8G SWAP空間了
free –h

# 由於重開機後SWAP設定便會跑掉,因此,把SWAP加到fstab設定檔中。
$ sudo cp /etc/fstab /etc/fstab.bak
$ echo '/swapfile none swap sw 0 0' | sudo tee -a /etc/fstab

2.3 專案啟動

2.3.0.1 從 JetPack 4.4.1 (Jetbot 0.4.2) 得支援 2GB 版本, 因此 remove 不少套件, 而且從 command line 開機, 因此, 即使我們用的是 4GB 版本, 還是得安裝許多套件

1. Install Jetbot

$ sudo apt update
$ sudo apt install libffi-dev python3-pip
$ sudo pip3 install ipywidgets
$ sudo pip3 install traitlets  # package already satified
$ cd ~/jetbot
$ sudo python3 setup.py install

2. Install Pytorch in order to run jetbot module, the instrution can be refer to https://forums.developer.nvidia.com/t/pytorch-for-jetson-version-1-7-0-now-available/72048. for latest version

$ sudo apt-get install libopenblas-base libopenmpi-dev 
$ pip3 install Cython
$ wget https://nvidia.box.com/shared/static/9eptse6jyly1ggt9axbja2yrmj6pbarc.whl -O torch-1.7.0-cp36-cp36m-linux_aarch64.whl
$ pip3 install numpy torch-1.7.0-cp36-cp36m-linux_aarch64.whl

3. CUDA 環境設定, 參考JKJung JetPack-4.4 for Jetson Nano 建議的 Basic set-up 的 ./install_basics.sh

$ git clone https://github.com/jkjung-avt/jetson_nano.git
$ cd jetson_nano
$ ./install_basics.sh
$ source ${HOME}/.bashrc
$

或是自行設定

# If you used the Jetson Nano SD card image, then yes, it already has the CUDA Toolkit installed. Check under /usr/local/cuda to verify that it’s there.

# Check that your ~/.bashrc file has these lines at the end, and if not, add them and restart your terminal:

export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

4. Making sure python3 “cv2” is working

# Install dependencies for python3 "cv2"
$ sudo apt-get update
$ sudo apt-get install -y build-essential make cmake cmake-curses-gui \
                          git g++ pkg-config curl libfreetype6-dev \
                          libcanberra-gtk-module libcanberra-gtk3-module
$ sudo apt-get install -y python3-dev python3-testresources python3-pip
$ sudo pip3 install -U pip Cython
$ git clone https://github.com/jkjung-avt/jetson_nano.git
$ cd ${HOME}/jetson_nano
$ ./install_protobuf-3.8.0.sh    # will take hours to complete the installation
$ sudo apt-get install protobuf-compiler libprotoc-dev
$ sudo pip3 install numpy matplotlib==3.2.2


# 測試 Then I tested my tegra-cam.py script with a USB webcam, and made sure the python3 “cv2” module could capture and display images properly.
# Test tegra-cam.py (using a USB webcam)
$ cd ~
$ wget https://gist.githubusercontent.com/jkjung-avt/86b60a7723b97da19f7bfa3cb7d2690e/raw/3dd82662f6b4584c58ba81ecba93dd6f52c3366c/tegra-cam.py
# 如果是用 CSI camera
$ python3 tegra-cam.py --vid 0
# 如果是用 USB camera
$ python3 tegra-cam.py --usb --vid 0

5. Installing tensorflow-1.15.2 NVIDIA has provided pip wheel files for both tensorflow-1.15.2 and tensorflow-2.2.0 (link). I used 1.15.2 since my TensorRT Demo #3: SSD only works for tensorflow-1.x.

$ sudo apt-get install -y libhdf5-serial-dev hdf5-tools libhdf5-dev zlib1g-dev zip libjpeg8-dev liblapack-dev libblas-dev gfortran
$ sudo pip3 install -U pip testresources setuptools
$ sudo pip3 install -U numpy==1.16.1 future mock h5py==2.10.0 keras_preprocessing keras_applications gast==0.2.2 futures pybind11
$ sudo pip3 install --pre --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v44 tensorflow==1.15.2

2.4 Car Deploying

參考 https://github.com/jkjung-avt/tensorrt_demos Demo #5: YOLOv4 步驟執行以下指令

# Clone tennsorrt_demo
$ cd ~
$ git clone https://github.com/jkjung-avt/tensorrt_demos

# 1.1 Install "pycuda". Note that the installation script resides in the "ssd" folder.
$ cd ${HOME}/tensorrt_demos/ssd
$ ./install_pycuda.sh

# 1.2 Install version "1.4.1" (not the latest version) of python3 "onnx" module. Note that the "onnx" module would depend on "protobuf" as stated in the Prerequisite section. Reference: information provided by NVIDIA.
$ sudo apt-get install protobuf-compiler libprotoc-dev # already the newest version
$ sudo pip3 install onnx==1.4.1

# 1.3 Go to the "plugins/" subdirectory and build the "yolo_layer" plugin. When done, a "libyolo_layer.so" would be generated.

$ cd ${HOME}/tensorrt_demos/plugins
$ make

2.5 model training 訓練模型及模型轉換

參考 JK Jung 的 github 的 training on Google Colab, 及注意事項 blog TensorRT YOLOv3 For Custom Trained Models - 注意檔案命名, 檔案名稱需要包含 yolov4-416 字樣, 如 yolov4-my-416.weights 跟 yolov4-my-416.cfg 或 yolov4-416.weights 跟 yolov4-416.cfg

  • 1-1. 在 Google Colab 執行 ‘darknet_on_colab.ipynb’
    • 上傳 github darknet_on_colab.ipynb 到 colab
    • remember to change runtime type to ‘GPU’
    • 儲存模型 yolov4_my_final.weights (darknet 儲存於 /content/darknet/backup/) 跟 yolov4_my.cfg (darknet 儲存於 /content/darknet/cfg/) 到 Jetson Nano 的 ${HOME}/tensorrt_demos/yolo 下, 並改名為 yolov4-416.weights 跟 yolov4-416.cfg
$ git clone https://github.com/marconi1964/jetbot_yolov4.git
$ cd jetbot_yolov4
$ ./server_darknet_setup.sh        # don't use $ sudo ./server_darknet_setup.sh 應為這樣會安裝 darknet 在 /root 下
$ ./server_darknet.sh
  1. Model translation from to onnx to tensorrt
$ cd ${HOME}/tensorrt_demos/yolo
# 將訓練模型的結果下載到此目錄下 
$ python3 yolo_to_onnx.py -c 4 -m yolov4-416           # 我們的 catergory 有 4 個, 需要設定 -c 4 
$ python3 onnx_to_tensorrt.py -v -c 4 -m yolov4-416    # 此轉檔需要一段時間, 打開 -v 可以看到進度

2.6 開跑

  1. 下載 github - jetbot_yolov4
  2. 將 main.py copy 到 tensorrt_demos
  3. 執行 python3 jetbot_main.py
$ cd ~
$ git clone https://github.com/marconi1964/jetbot_yolov4.git
$ cp ${HOME}/jetbot_yolov4/main.py ${HOME}/tensorrt_demos
$ cd ${HOME}/tensorrt_demos
$ python3 jetbot_main.py